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The finite element method is shown to be very instrumental in obtaining scattering and tun- 
neling solutions of the l-dimensional Schrodinger equation. Computation of the wavefunction 
amounts to solving two linear banded systems. In the treatment of tunneling problems, this 
new method is found more efficient than two finite difference schemes presented previously. 
0 1989 Academic Press, Inc. 

I. INTRODUCTION 

Applications of the finite element method (FEM) to the resolution of the 
Schrodinger equation are rather recent and most of them have been concerned with 
the computation of bound states [l&4]. To our knowledge, the sole finite element 
treatment of states lying in the continuum part of the energy spectrum is that 
performed by Nordholm and Backsay [S, 61. In their work, the wavefunction 
extends from x = 0 to x = + co, and vanishes at x = 0. 

In the present paper, we solve the 1D Schrodinger problem of the scattering of 
plane waves by a localized potential, e.g., the tunneling through a potential barrier, 
and describe a simple scheme to compute the transmission coefficient and the 
wavefunction phase shift. For this purpose, it is necessary to extend the wavefunc- 
tion range to (-cc, +cc), since the electron comes from ---co and either is reflected 
to -cc or is transmitted to + CC. 

The latter problem has already been dealt with using a finite difference 
scheme [7], further improved by the Numerov method [8]. These methods are 
shown to be highly valuable to overcome the limitations imposed by the semiclas- 
sical approaches most often used in this context. We wish however to point out that 
the FEM is more efficient with respect to memory allocation and computational 
efficiency than the discrete schemes proposed in previous works. 

The interest for treating l-dimensional scattering problems is clearly illustrated 
by their use in the recently discovered resonant tunneling in superlattices [9-111, 
or in the resolution of 3-dimensional tunneling problems by the Green’s function 
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method [ 121, which requires a preliminary knowledge of l-dimensional tunneling 
wavefunctions, which should be computed using the most effective technique. An 
extension of the method presented here to 3-dimensional tunneling problems will be 
published elsewhere [ 13). 

II. FRAMEWORK 

We attempt to numerically solve the Schrodinger equation (ti = 2m = l), 

-$+(V(x)-E) !P(x)=O 

associated with a localized potential, i.e., V(x) = 0 for x < C and x > D. If the poten- 
tial is not localized (e.g., for a barrier of gaussian shape), it must be truncated to 
an interval (C, D) outside which the potential differs negligeably from a constant 
value. This truncation introduces an error in the results. 

Hence, the numerical computation may be restricted to the interval (C, D), as the 
wavefunction in the zero potential regions is known to be a linear combination of 
the plane waves 

e+ikx and e -jkX, 

where 

k=fi. (2) 

The wavefunctions and their derivatives must be continuous at both x = C and 
x = D. For sake of simplicity, we restrict our attention to potentials V(x) which 
assume identical values (here the zero of energy) at x < C and x > D. The technique 
presented hereafter can easily be generalized to more general situations. 

Since we aim at computing the wavefunction of a particle approaching the 
barrier from -00, we impose that the wavefunction for x > D is the transmitted 
wave: 

yveik(x-D) 
3 xaD. (3) 

Solving Eq. (1) in (C, D) and applying the matching conditions yield the 
coefficients A and B of the incident and reflected waves: 

~=Aeik(x-C)+Be~ik(“-C), x < c. (4) 
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III. METHOD 

The interval (C, D) is subdivided into N elements (xi, xi+ i), i= 0 to N- 1, with 
x,, = C and xN = D. Although this is not necessary, we work with elements of equal 
lengths, 

xi=C+ih, i=OtoN (5) 

where 

D-C 
h=N. 

(This uniform mesh has been found sufficiently efficient for our purpose.) 
In each element (xi, xi+ r), the wavefunction Y is approximated by a cubic 

polynomial of x, the four coefficients of which being related to the values of Y and 
to its first derivative at the end points of this interval. It is equivalent to express Y 
in a basis of real shape functions @’ and @f localized in the intervals )xi- r, xi+ r( 
(see Fig. 1): 

Y(X)= f 
[ 

dY(x.) 

j=O 
Y(Xj)@;(x)+*Qi:(x) 1 

q?(x) = (1 - t)2 (1 + 2t) 

@j (x) = sign(x)( 1 - t2) t 

where 

*=lxl 
h 

and sign(x) = -1 if x<O 

= +l if x > 0. 

I 

(6) 

FIG. 1. Shape functions used in the finite-element method. The basis is composed of the two types 
of shape functions at every point of the discretization mesh. 
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The @y shape function is somewhat similar to a B-spline [14]: the difference 
between these two functions is that a B-spline extends over four elements while $’ 
extends over only two elements. The @,! shape function, associated with the 
derivative of Y, is typical of the FEM. The reason for choosing these shape 
functions (rather than, e.g., linear or quadratic shape functions) is that they enable 
us to match Y and its first derivative on the element boundaries. 

Galerkin’s method [ 151 yields the so-called weak form of Eq. (1 ), i.e., only the 
projection of this equation on all basis functions is required to hold: for i = 0 to N, 

0) 

Equations (7a) and (7b) lead to a system of 2N+ 2 linear homogeneous 
equations with 2N + 2 unknowns. 

Due to the fact that all matrix elements of Eqs. (7) are real (the shape functions 
are real), it is possible to separately compute the real and imaginary parts of Y. 

A. Real Part 

From Eq. (3), we know that Re( Y) satisfies a Neumann boundary condition at 
x=D: 

-$ [Re Y(x~)] = 0. (8) 

We arbitrarily set 

Re Y(x,) = 1. (9) 

Consequently, in the system (7), the terms containing Re Y(x,) are transferred to 
the right-hand sides of the equations, whereas 

vanishes. To determine the 2N remaining coefficients of the expansion (6), we only 
need 2N equations: we discard those of Eqs. (7b) involving the bra vectors (@AI 
and (@;I. So, we obtain a 2N x 2N linear system. The part of Re (Y) remaining 
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in the left-hand side of this system satisfies a Dirichlet boundary condition at x = C 
and a Neumann boundary condition at x = D. (This artificial introduction of 
boundary conditions generalizes the approach in [6].) These boundary conditions 
are necessary in order to ensure that the solution of the corresponding differential 
equation be unique and hence to prevent the linear system becoming singular. The 
resolution yields 

Re Y(x,) d’Y(xi 1 and Re - [ 1 dx 
for i=OtoN. 

Finally, the solution so obtained is renormalized to satisfy 

Re Y(x,) = 1 (10) 

which results from Eq. (3). 

B. Imaginary Part 

The imaginary part is obtained in a very similar way. The only difference is that 
the unknown part of Im Y satisfies a Neumann boundary condition at x = C and 
a Dirichlet boundary condition at x = D. The normalization of Im Y results again 
from Eq. (3): 

Im dyY(xN) = k [ 1 dx ’ (11) 

C. Transmission Coefficient and Phase Shift 

Since we can determine both the real and imaginary parts of Y and its first 
derivative for C < x < D, the coefficients A and B of Eq. (4) are immediately derived 
from the matching conditions at x = C. The transmission coefficient T and the 
phase shift rp are extracted from A [7]: 

JTe’q =i. 
A (12) 

IV. COMPUTATIONAL ASPECTS 

Since the basis functions @y(x) and @i(x) are localized in )xi- ,, xi+ ,(, the 
matrix element 

( ’ I @?I’ --$+ V(x)-E CD;‘/’ I > (13) 

is non-zero only when Ii - jl G 1. Hence, the matrices of the 2N x 2N linear systems 
are banded with a bandwidth equal to 7. 
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As usual in the FEM, the kinetic part of the matrix element (13) is determined 
via an integration by parts [16]: 

(14) 

The integrals in Eq. (14) are evaluated analytically accounting for the simple 
form of the chosen basis functions. 

The potential part of the matrix element (13) cannot, in general, be evaluated in 
closed form. We made use of a three-point Gauss-Legendre quadrature rule to 
evaluate it on each finite element. In the sample problem considered in Section V, 
the accuracy on T and cp could not be improved with a five-point quadrature 
technique. A consequence of this choice of the integration technique is that the 
potential must be evaluated on a mesh of rather irregularly distributed points. The 
information concerning the potential is then not quite equivalent to that provided 
in the finite difference analysis with similar discretization resolution. 

V. RESULTS AND COMPARISON WITH NUMEROV’S ALGORITHM 

We have used the above approach to determine the transmission coefficient T 
and the phase shift cp of an electron with E = 2, 7, and 12 tunneling through a 
model metal-vacuum-metal junction. The potential, including image contributions, 
is (see Fig. 2) 

1 
V(x)= 14--- 

1 
x+a 5-x+a’ 

O<x<5 
(15) 

V(x) = 0, elsewhere. 

a is chosen such that V(x) = 0 if x = 0 or x = 5. 

Q- 

I I I 

FIG. 2. Potential barrier of the tunneling problem considered in this paper. The horizontal dotted 
lines are the energy levels for which the transmission coefficient and the phase shift have been computed. 
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A simple FORTRAN routine implementing this solution is available on request. 
(Use the electronic mail: LALOYAUX at BNANDPll.) 

The same problem has been solved using the finite-difference algorithms 
developed by Lambin and Vigneron [7,8]. A comparison between the outcome of 
the three methods is shown in Tables I and II. The number of steps in each method 
is chosen to achieve relative errors of lo%, l%, O.l%, and 0.01% on T and 
absolute errors of 0.1, 0.01, and 0.001 radians on cp. The computation times (CPU 
times) are compared. It occurs that for low accuracies the finite difference schemes 
may be quicker than the finite elements, even though they require a higher number 
of steps. Nevertheless, if a higher number of significant digits is required, the FEM 
becomes the most effective technique, owing to the better convergence of the results 
as the number of discretization steps is increased. The lower the energy of the 
tunneling particle, the earlier the crossing over of the finite difference and FEM 
calculation times occurs. 

TABLE I 

Comparison between the Number of Steps and the Calculation Time (in CPU Seconds) 
Needed to Achieve Relative Errors of lo%, l%, O.l%, and 0.01% on T with the Finite Element, 

Continued Fractions and Numerov Methods 

Finite element method Numerov algorithm 

N Time Transm. coeff. N Time Transm. coeff. 

Continuedfractions 

N Time Transm. coeff. 

E=2: Exact T=0.208112x lo-l2 

(10-12) 

9 0.03 0.221619 10 0.00 
11 0.04 0.208507 343 0.10 
24 0.09 0.207939 1175 0.34 
42 0.15 0.208091 4046 1.15 

E= 7: Exact T=0.271077 x lo-* 

(10-s) 

6 0.02 0.286081 24 0.01 
12 0.04 0.273445 215 0.06 
28 0.10 0.271320 731 0.21 
60 0.22 0.271100 2286 0.65 

E = 12: Exact T=0.489308 x lo-* 

(10-2) 

5 0.02 0.529623 17 0.01 
10 0.04 0.493982 215 0.06 
19 0.07 0.489754 731 0.21 
33 0.12 0.489354 2514 0.71 

(lo-‘*) 

0.196217 
0.206091 
0.207914 
0.208094 

(lo-s) 

0.245136 
0.268724 
0.270831 
0.271050 

(lo-*) 

0.441144 
0.493598 
0.489758 
0.489349 

79 0.02 
259 0.06 
804 0.18 

2514 0.58 

46 0.01 
149 0.03 
455 0.11 

1563 0.36 

36 0.01 
113 0.03 
377 0.09 

1175 0.28 

(10-12) 

0.228621 
0.209958 
0.208303 
0.208131 

(10-s) 

0.297792 
0.273554 
0.271342 
0.271100 

(10-z) 

0.446634 
0.484659 
0.488887 
0.489265 

Note. The “exact” values of T are obtained by the FEM with loo0 steps. 
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TABLE II 

Comparison between the Number of Steps and the Calculation Time (in CPU Seconds) 
Needed to Achieve Absolute Errors of 0.1, 0.01, and 0.001 Radians on q with the Finite Element, 

Continued Fractions, and Numerov Methods 

Finite element method Numerov algorithm Continuedfractions 

N Time Phase shift N Time Phase shift N Time Phase shift 

E = 2: Exact cp = -0.407423 

4 0.02 -0.47721 
12 0.04 -0.41574 
26 0.10 - 0.40825 

E = 7: Exact cp = 0.853125 

5 0.02 0.76561 
12 0.04 0.84456 
24 0.09 0.85225 

E = 12: Exact cp = 2.63280 

4 0.02 2.6314 
4 0.02 2.6314 

16 0.06 2.6338 

55 0.02 - 0.49940 86 0.02 -0.31206 
196 0.06 -0.41607 731 0.18 -0.39757 
665 0.19 -0.40836 7165 1.65 -0.40643 

14 0.01 0.95046 149 0.03 0.94874 
236 0.07 0.84338 1421 0.33 0.86251 
884 0.25 0.85228 13,957 3.32 0.85407 

17 0.01 2.5374 179 0.04 2.7326 
28 0.01 2.6269 1890 0.44 2.6420 

665 0.19 2.6319 18,575 4.31 2.6337 

Note. The “exact” values of cp are obtained by the FEM with 1000 steps 

In the three methods, memory storage and computation time are proportional to 
the number of discretization elements. This is readily understandable for the finite 
difference techniques which lead to three-term recurrence equations. The same 
holds true with the FEM: the bandwidth of the linear system involved is also 
independent of the discretization size. 

The above example shows that the FEM approach is more advisable from the 
computational point of view than the finite difference schemes advocated earlier to 
improve upon the usual semi-classical schemes. 
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